Skip to content

Load Perturbations

This module provides functions and classes for generating load scenarios.

Classes

LoadScenarioGeneratorBase

Bases: ABC

Abstract base class for load scenario generators.

This class defines the interface and common functionality for generating load scenarios for power grid networks.

Source code in gridfm_datakit/perturbations/load_perturbation.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
class LoadScenarioGeneratorBase(ABC):
    """Abstract base class for load scenario generators.

    This class defines the interface and common functionality for generating
    load scenarios for power grid networks.
    """

    @abstractmethod
    def __call__(
        self,
        net: Network,
        n_scenarios: int,
        scenario_log: str,
        max_iter: int,
        seed: int,
    ) -> np.ndarray:
        """Generates load scenarios for a power network.

        Args:
            net: The power network.
            n_scenarios: Number of scenarios to generate.
            scenario_log: Path to log file for scenario generation details.
            max_iter: Maximum iterations for the OPF solver.
            seed: Global random seed for reproducibility.
        Returns:
            numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.
        """
        pass

    @staticmethod
    def interpolate_row(row: np.ndarray, data_points: int) -> np.ndarray:
        """Interpolates a row of data to match the desired number of data points.

        Args:
            row: Input data array to interpolate.
            data_points: Number of points in the output array.

        Returns:
            numpy.ndarray: Interpolated data array of length data_points.
        """
        if np.all(row == 0):
            return np.zeros(data_points)
        x_original = np.linspace(1, len(row), len(row))
        x_target = np.linspace(1, len(row), data_points)
        return interp1d(x_original, row, kind="linear")(x_target)

    @staticmethod
    def find_largest_scaling_factor(
        net: Network,
        max_scaling: float,
        step_size: float,
        start: float,
        change_reactive_power: bool,
        max_iter: int,
    ) -> Tuple[Pool, Any]:
        """Finds the largest load scaling factor that maintains OPF convergence.

        Args:
            net: The power network.
            max_scaling: Maximum scaling factor to try.
            step_size: Increment for scaling factor search.
            start: Starting scaling factor.
            change_reactive_power: Whether to scale reactive power.
            max_iter: Maximum iterations for the OPF solver.

        Returns:
            float: Largest scaling factor that maintains OPF convergence.

        Raises:
            RuntimeError: If OPF does not converge for the starting value.
        """
        pool = Pool(processes=1)
        result = pool.apply_async(
            _find_largest_scaling_factor_worker,
            ((net, max_scaling, step_size, start, change_reactive_power, max_iter),),
        )
        return pool, result

    @staticmethod
    def min_max_scale(series: np.ndarray, new_min: float, new_max: float) -> np.ndarray:
        """Scales a series of values to a new range using min-max normalization.

        Args:
            series: Input data array to scale.
            new_min: Minimum value of the output range.
            new_max: Maximum value of the output range.

        Returns:
            numpy.ndarray: Scaled data array.
        """
        old_min, old_max = np.min(series), np.max(series)
        if old_max == old_min:
            return np.ones_like(series) * new_min
        else:
            return new_min + (series - old_min) * (new_max - new_min) / (
                old_max - old_min
            )
__call__(net, n_scenarios, scenario_log, max_iter, seed) abstractmethod

Generates load scenarios for a power network.

Parameters:

Name Type Description Default
net Network

The power network.

required
n_scenarios int

Number of scenarios to generate.

required
scenario_log str

Path to log file for scenario generation details.

required
max_iter int

Maximum iterations for the OPF solver.

required
seed int

Global random seed for reproducibility.

required

Returns: numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

Source code in gridfm_datakit/perturbations/load_perturbation.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
@abstractmethod
def __call__(
    self,
    net: Network,
    n_scenarios: int,
    scenario_log: str,
    max_iter: int,
    seed: int,
) -> np.ndarray:
    """Generates load scenarios for a power network.

    Args:
        net: The power network.
        n_scenarios: Number of scenarios to generate.
        scenario_log: Path to log file for scenario generation details.
        max_iter: Maximum iterations for the OPF solver.
        seed: Global random seed for reproducibility.
    Returns:
        numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.
    """
    pass
find_largest_scaling_factor(net, max_scaling, step_size, start, change_reactive_power, max_iter) staticmethod

Finds the largest load scaling factor that maintains OPF convergence.

Parameters:

Name Type Description Default
net Network

The power network.

required
max_scaling float

Maximum scaling factor to try.

required
step_size float

Increment for scaling factor search.

required
start float

Starting scaling factor.

required
change_reactive_power bool

Whether to scale reactive power.

required
max_iter int

Maximum iterations for the OPF solver.

required

Returns:

Name Type Description
float Tuple[Pool, Any]

Largest scaling factor that maintains OPF convergence.

Raises:

Type Description
RuntimeError

If OPF does not converge for the starting value.

Source code in gridfm_datakit/perturbations/load_perturbation.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
@staticmethod
def find_largest_scaling_factor(
    net: Network,
    max_scaling: float,
    step_size: float,
    start: float,
    change_reactive_power: bool,
    max_iter: int,
) -> Tuple[Pool, Any]:
    """Finds the largest load scaling factor that maintains OPF convergence.

    Args:
        net: The power network.
        max_scaling: Maximum scaling factor to try.
        step_size: Increment for scaling factor search.
        start: Starting scaling factor.
        change_reactive_power: Whether to scale reactive power.
        max_iter: Maximum iterations for the OPF solver.

    Returns:
        float: Largest scaling factor that maintains OPF convergence.

    Raises:
        RuntimeError: If OPF does not converge for the starting value.
    """
    pool = Pool(processes=1)
    result = pool.apply_async(
        _find_largest_scaling_factor_worker,
        ((net, max_scaling, step_size, start, change_reactive_power, max_iter),),
    )
    return pool, result
interpolate_row(row, data_points) staticmethod

Interpolates a row of data to match the desired number of data points.

Parameters:

Name Type Description Default
row ndarray

Input data array to interpolate.

required
data_points int

Number of points in the output array.

required

Returns:

Type Description
ndarray

numpy.ndarray: Interpolated data array of length data_points.

Source code in gridfm_datakit/perturbations/load_perturbation.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@staticmethod
def interpolate_row(row: np.ndarray, data_points: int) -> np.ndarray:
    """Interpolates a row of data to match the desired number of data points.

    Args:
        row: Input data array to interpolate.
        data_points: Number of points in the output array.

    Returns:
        numpy.ndarray: Interpolated data array of length data_points.
    """
    if np.all(row == 0):
        return np.zeros(data_points)
    x_original = np.linspace(1, len(row), len(row))
    x_target = np.linspace(1, len(row), data_points)
    return interp1d(x_original, row, kind="linear")(x_target)
min_max_scale(series, new_min, new_max) staticmethod

Scales a series of values to a new range using min-max normalization.

Parameters:

Name Type Description Default
series ndarray

Input data array to scale.

required
new_min float

Minimum value of the output range.

required
new_max float

Maximum value of the output range.

required

Returns:

Type Description
ndarray

numpy.ndarray: Scaled data array.

Source code in gridfm_datakit/perturbations/load_perturbation.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
@staticmethod
def min_max_scale(series: np.ndarray, new_min: float, new_max: float) -> np.ndarray:
    """Scales a series of values to a new range using min-max normalization.

    Args:
        series: Input data array to scale.
        new_min: Minimum value of the output range.
        new_max: Maximum value of the output range.

    Returns:
        numpy.ndarray: Scaled data array.
    """
    old_min, old_max = np.min(series), np.max(series)
    if old_max == old_min:
        return np.ones_like(series) * new_min
    else:
        return new_min + (series - old_min) * (new_max - new_min) / (
            old_max - old_min
        )

LoadScenariosFromAggProfile

Bases: LoadScenarioGeneratorBase

Generates load scenarios by scaling an aggregated load profile and adding local noise.

Overview

This generator uses an aggregated load profile (a time series of normalized demand values) to simulate realistic variations in load over time. The process includes:

  1. Determining an upper bound u for load scaling such that the network still supports a feasible optimal power flow (OPF) solution.
  2. Setting the lower bound \(l = (1 - \text{global\textunderscore range}) \cdot u\).
  3. Min-max scaling the aggregate profile to the interval \([l, u]\).
  4. Applying this global scaling factor to each load's nominal value with additive uniform noise.

Mathematical Model

Let:

  • \(n\): Number of loads (\(i \in \{1, \dots, n\}\))

  • \(K\): Number of scenarios (\(k \in \{1, \dots, K\}\))

  • \((p, q) \in (\mathbb{R}_{\geq 0}^n)^2\): Nominal active/reactive loads

  • \(\text{agg}^k\): Aggregated load profile value at time step \(k\)

  • \(u\): Maximum feasible global scaling factor (from OPF)

  • \(l = (1 - \text{global\textunderscore range}) \cdot u\): Minimum global scaling factor

  • \(\text{ref}^k = \text{MinMaxScale}(\text{agg}^k, [l, u])\): Scaled aggregate profile

  • \(\varepsilon_i^k \sim \mathcal{U}(1 - \sigma, 1 + \sigma)\): Active power noise

  • \(\eta_i^k \sim \mathcal{U}(1 - \sigma, 1 + \sigma)\): Reactive power noise (if enabled)

Then for each load \(i\) and scenario \(k\):

For each load \(i\) and scenario \(k\): $$ \tilde{p}_i^k = p_i \cdot \text{ref}^k \cdot \varepsilon_i^k $$

\[ \tilde{q}_i^k = \begin{cases} q_i \cdot \text{ref}^k \cdot \eta_i^k & \text{if } \texttt{change\textunderscore reactive\textunderscore power} = \texttt{True} \\ q_i & \text{otherwise} \end{cases} \]

Notes

  • The upper bound u is automatically determined by gradually increasing the base load and solving the OPF until it fails.

  • The lower bound l is computed as a relative percentage (1-global_range) of u.

  • Noise helps simulate local variability across loads within a global trend.

Source code in gridfm_datakit/perturbations/load_perturbation.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
class LoadScenariosFromAggProfile(LoadScenarioGeneratorBase):
    r"""
    Generates load scenarios by scaling an aggregated load profile and adding local noise.

    **Overview**

    This generator uses an aggregated load profile (a time series of normalized demand values)
    to simulate realistic variations in load over time. The process includes:

    1. Determining an upper bound `u` for load scaling such that the network still
       supports a feasible optimal power flow (OPF) solution.
    2. Setting the lower bound $l = (1 - \text{global\textunderscore range}) \cdot u$.
    3. Min-max scaling the aggregate profile to the interval \([l, u]\).
    4. Applying this global scaling factor to each load's nominal value with additive uniform noise.

    **Mathematical Model**

    Let:

    - $n$: Number of loads ($i \in \{1, \dots, n\}$)

    - $K$: Number of scenarios ($k \in \{1, \dots, K\}$)

    - $(p, q) \in (\mathbb{R}_{\geq 0}^n)^2$: Nominal active/reactive loads

    - $\text{agg}^k$: Aggregated load profile value at time step $k$

    - $u$: Maximum feasible global scaling factor (from OPF)

    - $l = (1 - \text{global\textunderscore range}) \cdot u$: Minimum global scaling factor

    - $\text{ref}^k = \text{MinMaxScale}(\text{agg}^k, [l, u])$: Scaled aggregate profile

    - $\varepsilon_i^k \sim \mathcal{U}(1 - \sigma, 1 + \sigma)$: Active power noise

    - $\eta_i^k \sim \mathcal{U}(1 - \sigma, 1 + \sigma)$: Reactive power noise (if enabled)

    Then for each load $i$ and scenario $k$:

    For each load $i$ and scenario $k$:
    $$
    \tilde{p}_i^k = p_i \cdot \text{ref}^k \cdot \varepsilon_i^k
    $$

    $$
    \tilde{q}_i^k =
    \begin{cases}
    q_i \cdot \text{ref}^k \cdot \eta_i^k & \text{if } \texttt{change\textunderscore reactive\textunderscore power} = \texttt{True} \\
    q_i & \text{otherwise}
    \end{cases}
    $$

    **Notes**

    - The upper bound `u` is automatically determined by gradually increasing the base load and solving the OPF until it fails.

    - The lower bound `l` is computed as a relative percentage (1-`global_range`) of `u`.

    - Noise helps simulate local variability across loads within a global trend.
    """

    def __init__(
        self,
        agg_load_name: str,
        sigma: float,
        change_reactive_power: bool,
        global_range: float,
        max_scaling_factor: float,
        step_size: float,
        start_scaling_factor: float,
    ):
        """Initializes the load scenario generator.

        Args:
            agg_load_name: Name of the aggregated load profile file.
            sigma: Standard deviation for noise addition.
            change_reactive_power: Whether to scale reactive power.
            global_range: Range for scaling factor.
            max_scaling_factor: Maximum scaling factor to try.
            step_size: Increment for scaling factor search.
            start_scaling_factor: Starting scaling factor.
        """
        self.agg_load_name = agg_load_name
        self.sigma = sigma
        self.change_reactive_power = change_reactive_power
        self.global_range = global_range
        self.max_scaling_factor = max_scaling_factor
        self.step_size = step_size
        self.start_scaling_factor = start_scaling_factor

    def __call__(
        self,
        net: Network,
        n_scenarios: int,
        scenarios_log: str,
        max_iter: int,
        seed: int,
    ) -> np.ndarray:
        """Generates load profiles based on aggregated load data.

        Args:
            net: The power network.
            n_scenarios: Number of scenarios to generate.
            scenarios_log: Path to log file for scenario generation details.
            max_iter: Maximum iterations for the OPF solver.
            seed: Global random seed for reproducibility.
        Returns:
            numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

        Raises:
            ValueError: If start_scaling_factor is less than global_range.
        """
        if (
            self.start_scaling_factor - self.global_range * self.start_scaling_factor
            < 0
        ):
            raise ValueError(
                "The start scaling factor must be larger than the global range.",
            )

        pool, async_result = self.find_largest_scaling_factor(
            net,
            max_scaling=self.max_scaling_factor,
            step_size=self.step_size,
            start=self.start_scaling_factor,
            change_reactive_power=self.change_reactive_power,
            max_iter=max_iter,
        )

        try:
            # wait for the worker to finish and fetch numeric result
            u = async_result.get(timeout=None)
        finally:
            pool.close()
            pool.join()

        lower = (
            u - self.global_range * u
        )  # The lower bound used to be set as e.g. u - 40%, while now it is set as u - 40% of u

        with open(scenarios_log, "a") as f:
            f.write("u=" + str(u) + "\n")
            f.write("l=" + str(lower) + "\n")

        agg_load_path = resources.files("gridfm_datakit.load_profiles").joinpath(
            f"{self.agg_load_name}.csv",
        )
        agg_load = pd.read_csv(agg_load_path).to_numpy()
        agg_load = agg_load.reshape(agg_load.shape[0])
        ref_curve = self.min_max_scale(agg_load, lower, u)
        print("min, max of ref_curve: {}, {}".format(ref_curve.min(), ref_curve.max()))
        print("l, u: {}, {}".format(lower, u))

        p_mw_array = net.Pd.copy()  # note that we do use buses that have 0 load, but since we only perturb the load by multiplying it by a factor, it will still be 0
        q_mvar_array = net.Qd.copy()

        # if the number of requested scenarios is smaller than the number of timesteps in the load profile, we cut the load profile
        if n_scenarios <= ref_curve.shape[0]:
            print(
                "cutting the load profile (original length: {}, requested length: {})".format(
                    ref_curve.shape[0],
                    n_scenarios,
                ),
            )
            ref_curve = ref_curve[:n_scenarios]
        # if it is larger, we interpolate it
        else:
            print(
                "interpolating the load profile (original length: {}, requested length: {})".format(
                    ref_curve.shape[0],
                    n_scenarios,
                ),
            )
            ref_curve = self.interpolate_row(ref_curve, data_points=n_scenarios)

        # Use custom_seed context manager to temporarily set seed for noise generation
        with custom_seed(seed):
            load_profile_pmw = p_mw_array[:, np.newaxis] * ref_curve
            noise = np.random.uniform(
                1 - self.sigma,
                1 + self.sigma,
                size=load_profile_pmw.shape,
            )  # Add uniform noise
            load_profile_pmw *= noise

            if self.change_reactive_power:
                load_profile_qmvar = q_mvar_array[:, np.newaxis] * ref_curve
                noise = np.random.uniform(
                    1 - self.sigma,
                    1 + self.sigma,
                    size=load_profile_qmvar.shape,
                )  # Add uniform noise
                load_profile_qmvar *= noise
            else:
                load_profile_qmvar = q_mvar_array[:, np.newaxis] * np.ones_like(
                    ref_curve,
                )
                print("No change in reactive power across scenarios")

        # Stack profiles along the last dimension
        load_profiles = np.stack((load_profile_pmw, load_profile_qmvar), axis=-1)

        return load_profiles
__call__(net, n_scenarios, scenarios_log, max_iter, seed)

Generates load profiles based on aggregated load data.

Parameters:

Name Type Description Default
net Network

The power network.

required
n_scenarios int

Number of scenarios to generate.

required
scenarios_log str

Path to log file for scenario generation details.

required
max_iter int

Maximum iterations for the OPF solver.

required
seed int

Global random seed for reproducibility.

required

Returns: numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

Raises:

Type Description
ValueError

If start_scaling_factor is less than global_range.

Source code in gridfm_datakit/perturbations/load_perturbation.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
def __call__(
    self,
    net: Network,
    n_scenarios: int,
    scenarios_log: str,
    max_iter: int,
    seed: int,
) -> np.ndarray:
    """Generates load profiles based on aggregated load data.

    Args:
        net: The power network.
        n_scenarios: Number of scenarios to generate.
        scenarios_log: Path to log file for scenario generation details.
        max_iter: Maximum iterations for the OPF solver.
        seed: Global random seed for reproducibility.
    Returns:
        numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

    Raises:
        ValueError: If start_scaling_factor is less than global_range.
    """
    if (
        self.start_scaling_factor - self.global_range * self.start_scaling_factor
        < 0
    ):
        raise ValueError(
            "The start scaling factor must be larger than the global range.",
        )

    pool, async_result = self.find_largest_scaling_factor(
        net,
        max_scaling=self.max_scaling_factor,
        step_size=self.step_size,
        start=self.start_scaling_factor,
        change_reactive_power=self.change_reactive_power,
        max_iter=max_iter,
    )

    try:
        # wait for the worker to finish and fetch numeric result
        u = async_result.get(timeout=None)
    finally:
        pool.close()
        pool.join()

    lower = (
        u - self.global_range * u
    )  # The lower bound used to be set as e.g. u - 40%, while now it is set as u - 40% of u

    with open(scenarios_log, "a") as f:
        f.write("u=" + str(u) + "\n")
        f.write("l=" + str(lower) + "\n")

    agg_load_path = resources.files("gridfm_datakit.load_profiles").joinpath(
        f"{self.agg_load_name}.csv",
    )
    agg_load = pd.read_csv(agg_load_path).to_numpy()
    agg_load = agg_load.reshape(agg_load.shape[0])
    ref_curve = self.min_max_scale(agg_load, lower, u)
    print("min, max of ref_curve: {}, {}".format(ref_curve.min(), ref_curve.max()))
    print("l, u: {}, {}".format(lower, u))

    p_mw_array = net.Pd.copy()  # note that we do use buses that have 0 load, but since we only perturb the load by multiplying it by a factor, it will still be 0
    q_mvar_array = net.Qd.copy()

    # if the number of requested scenarios is smaller than the number of timesteps in the load profile, we cut the load profile
    if n_scenarios <= ref_curve.shape[0]:
        print(
            "cutting the load profile (original length: {}, requested length: {})".format(
                ref_curve.shape[0],
                n_scenarios,
            ),
        )
        ref_curve = ref_curve[:n_scenarios]
    # if it is larger, we interpolate it
    else:
        print(
            "interpolating the load profile (original length: {}, requested length: {})".format(
                ref_curve.shape[0],
                n_scenarios,
            ),
        )
        ref_curve = self.interpolate_row(ref_curve, data_points=n_scenarios)

    # Use custom_seed context manager to temporarily set seed for noise generation
    with custom_seed(seed):
        load_profile_pmw = p_mw_array[:, np.newaxis] * ref_curve
        noise = np.random.uniform(
            1 - self.sigma,
            1 + self.sigma,
            size=load_profile_pmw.shape,
        )  # Add uniform noise
        load_profile_pmw *= noise

        if self.change_reactive_power:
            load_profile_qmvar = q_mvar_array[:, np.newaxis] * ref_curve
            noise = np.random.uniform(
                1 - self.sigma,
                1 + self.sigma,
                size=load_profile_qmvar.shape,
            )  # Add uniform noise
            load_profile_qmvar *= noise
        else:
            load_profile_qmvar = q_mvar_array[:, np.newaxis] * np.ones_like(
                ref_curve,
            )
            print("No change in reactive power across scenarios")

    # Stack profiles along the last dimension
    load_profiles = np.stack((load_profile_pmw, load_profile_qmvar), axis=-1)

    return load_profiles
__init__(agg_load_name, sigma, change_reactive_power, global_range, max_scaling_factor, step_size, start_scaling_factor)

Initializes the load scenario generator.

Parameters:

Name Type Description Default
agg_load_name str

Name of the aggregated load profile file.

required
sigma float

Standard deviation for noise addition.

required
change_reactive_power bool

Whether to scale reactive power.

required
global_range float

Range for scaling factor.

required
max_scaling_factor float

Maximum scaling factor to try.

required
step_size float

Increment for scaling factor search.

required
start_scaling_factor float

Starting scaling factor.

required
Source code in gridfm_datakit/perturbations/load_perturbation.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def __init__(
    self,
    agg_load_name: str,
    sigma: float,
    change_reactive_power: bool,
    global_range: float,
    max_scaling_factor: float,
    step_size: float,
    start_scaling_factor: float,
):
    """Initializes the load scenario generator.

    Args:
        agg_load_name: Name of the aggregated load profile file.
        sigma: Standard deviation for noise addition.
        change_reactive_power: Whether to scale reactive power.
        global_range: Range for scaling factor.
        max_scaling_factor: Maximum scaling factor to try.
        step_size: Increment for scaling factor search.
        start_scaling_factor: Starting scaling factor.
    """
    self.agg_load_name = agg_load_name
    self.sigma = sigma
    self.change_reactive_power = change_reactive_power
    self.global_range = global_range
    self.max_scaling_factor = max_scaling_factor
    self.step_size = step_size
    self.start_scaling_factor = start_scaling_factor

Powergraph

Bases: LoadScenarioGeneratorBase

Load scenario generator using the PowerGraph method.

Generates load scenarios by scaling the nominal active power profile with a normalized reference curve while keeping reactive power fixed.

Mathematical Model

Let:

  • \(n\): Number of loads (indexed by \(i \in \{1, \dots, n\}\))
  • \(K\): Number of scenarios (indexed by \(k \in \{1, \dots, K\}\))
  • \((p, q) \in (\mathbb{R}_{\geq 0}^n)^2\): Nominal active and reactive load vectors
  • \(\text{ref}^k \in [0, 1]\): Normalized aggregate reference profile at scenario \(k\)
  • \((\tilde{p}_i^k, \tilde{q}_i^k) \in \mathbb{R}_{\geq 0}^2\): Active/reactive load at bus \(i\) in scenario \(k\)

The reference profile is computed by normalizing an aggregated profile:

\[ \text{ref}^k = \frac{\text{agg}^k}{\max_k \text{agg}^k} \]

Then, for each bus \(i\) and scenario \(k\):

\[ \tilde{p}_i^k = p_i \cdot \text{ref}^k \]

and reactive power is kept constant:

\[ \tilde{q}_i^k = q_i \]
Source code in gridfm_datakit/perturbations/load_perturbation.py
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
class Powergraph(LoadScenarioGeneratorBase):
    r"""
    Load scenario generator using the PowerGraph method.

    Generates load scenarios by scaling the nominal active power profile
    with a normalized reference curve while keeping reactive power fixed.

    **Mathematical Model**

    Let:

    - $n$: Number of loads (indexed by $i \in \{1, \dots, n\}$)
    - $K$: Number of scenarios (indexed by $k \in \{1, \dots, K\}$)
    - $(p, q) \in (\mathbb{R}_{\geq 0}^n)^2$: Nominal active and reactive load vectors
    - $\text{ref}^k \in [0, 1]$: Normalized aggregate reference profile at scenario $k$
    - $(\tilde{p}_i^k, \tilde{q}_i^k) \in \mathbb{R}_{\geq 0}^2$: Active/reactive load at bus $i$ in scenario $k$

    The reference profile is computed by normalizing an aggregated profile:

    $$
    \text{ref}^k = \frac{\text{agg}^k}{\max_k \text{agg}^k}
    $$

    Then, for each bus $i$ and scenario $k$:

    $$
    \tilde{p}_i^k = p_i \cdot \text{ref}^k
    $$

    and reactive power is kept constant:

    $$
    \tilde{q}_i^k = q_i
    $$"""

    def __init__(
        self,
        agg_load_name: str,
    ):
        """Initializes the powergraph load scenario generator.

        Args:
            agg_load_name: Name of the aggregated load profile file.
        """
        self.agg_load_name = agg_load_name

    def __call__(
        self,
        net: Network,
        n_scenarios: int,
        scenario_log: str,
        max_iter: int,
        seed: int,
    ) -> np.ndarray:
        """Generates load profiles based on aggregated load data.

        Args:
            net: The power network.
            n_scenarios: Number of scenarios to generate.
            scenario_log: Path to log file for scenario generation details.
            max_iter: Maximum iterations for the OPF solver (unused for Powergraph).
            seed: Global random seed for reproducibility.
        Returns:
            numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.
        """
        agg_load_path = resources.files("gridfm_datakit.load_profiles").joinpath(
            f"{self.agg_load_name}.csv",
        )
        agg_load = pd.read_csv(agg_load_path).to_numpy()
        agg_load = agg_load.reshape(agg_load.shape[0])
        ref_curve = agg_load / agg_load.max()
        print("u={}, l={}".format(ref_curve.max(), ref_curve.min()))

        p_mw_array = net.Pd.copy()
        q_mvar_array = net.Qd.copy()

        # if the number of requested scenarios is smaller than the number of timesteps in the load profile, we cut the load profile
        if n_scenarios <= ref_curve.shape[0]:
            print(
                "cutting the load profile (original length: {}, requested length: {})".format(
                    ref_curve.shape[0],
                    n_scenarios,
                ),
            )
            ref_curve = ref_curve[:n_scenarios]
        # if it is larger, we interpolate it
        else:
            print(
                "interpolating the load profile (original length: {}, requested length: {})".format(
                    ref_curve.shape[0],
                    n_scenarios,
                ),
            )
            ref_curve = self.interpolate_row(ref_curve, data_points=n_scenarios)

        load_profile_pmw = p_mw_array[:, np.newaxis] * ref_curve
        load_profile_qmvar = q_mvar_array[:, np.newaxis] * np.ones_like(ref_curve)
        print("No change in reactive power across scenarios")

        # Stack profiles along the last dimension
        load_profiles = np.stack((load_profile_pmw, load_profile_qmvar), axis=-1)

        return load_profiles
__call__(net, n_scenarios, scenario_log, max_iter, seed)

Generates load profiles based on aggregated load data.

Parameters:

Name Type Description Default
net Network

The power network.

required
n_scenarios int

Number of scenarios to generate.

required
scenario_log str

Path to log file for scenario generation details.

required
max_iter int

Maximum iterations for the OPF solver (unused for Powergraph).

required
seed int

Global random seed for reproducibility.

required

Returns: numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

Source code in gridfm_datakit/perturbations/load_perturbation.py
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def __call__(
    self,
    net: Network,
    n_scenarios: int,
    scenario_log: str,
    max_iter: int,
    seed: int,
) -> np.ndarray:
    """Generates load profiles based on aggregated load data.

    Args:
        net: The power network.
        n_scenarios: Number of scenarios to generate.
        scenario_log: Path to log file for scenario generation details.
        max_iter: Maximum iterations for the OPF solver (unused for Powergraph).
        seed: Global random seed for reproducibility.
    Returns:
        numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.
    """
    agg_load_path = resources.files("gridfm_datakit.load_profiles").joinpath(
        f"{self.agg_load_name}.csv",
    )
    agg_load = pd.read_csv(agg_load_path).to_numpy()
    agg_load = agg_load.reshape(agg_load.shape[0])
    ref_curve = agg_load / agg_load.max()
    print("u={}, l={}".format(ref_curve.max(), ref_curve.min()))

    p_mw_array = net.Pd.copy()
    q_mvar_array = net.Qd.copy()

    # if the number of requested scenarios is smaller than the number of timesteps in the load profile, we cut the load profile
    if n_scenarios <= ref_curve.shape[0]:
        print(
            "cutting the load profile (original length: {}, requested length: {})".format(
                ref_curve.shape[0],
                n_scenarios,
            ),
        )
        ref_curve = ref_curve[:n_scenarios]
    # if it is larger, we interpolate it
    else:
        print(
            "interpolating the load profile (original length: {}, requested length: {})".format(
                ref_curve.shape[0],
                n_scenarios,
            ),
        )
        ref_curve = self.interpolate_row(ref_curve, data_points=n_scenarios)

    load_profile_pmw = p_mw_array[:, np.newaxis] * ref_curve
    load_profile_qmvar = q_mvar_array[:, np.newaxis] * np.ones_like(ref_curve)
    print("No change in reactive power across scenarios")

    # Stack profiles along the last dimension
    load_profiles = np.stack((load_profile_pmw, load_profile_qmvar), axis=-1)

    return load_profiles
__init__(agg_load_name)

Initializes the powergraph load scenario generator.

Parameters:

Name Type Description Default
agg_load_name str

Name of the aggregated load profile file.

required
Source code in gridfm_datakit/perturbations/load_perturbation.py
501
502
503
504
505
506
507
508
509
510
def __init__(
    self,
    agg_load_name: str,
):
    """Initializes the powergraph load scenario generator.

    Args:
        agg_load_name: Name of the aggregated load profile file.
    """
    self.agg_load_name = agg_load_name

load_scenarios_to_df

Converts load scenarios array to a DataFrame.

Parameters:

Name Type Description Default
scenarios ndarray

3D numpy array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

required

Returns:

Type Description
DataFrame

DataFrame with columns: load_scenario, load, p_mw, q_mvar.

Source code in gridfm_datakit/perturbations/load_perturbation.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def load_scenarios_to_df(scenarios: np.ndarray) -> pd.DataFrame:
    """Converts load scenarios array to a DataFrame.

    Args:
        scenarios: 3D numpy array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values.

    Returns:
        DataFrame with columns: load_scenario, load, p_mw, q_mvar.
    """
    n_loads = scenarios.shape[0]
    n_scenarios = scenarios.shape[1]

    # Flatten the array
    reshaped_array = scenarios.reshape((-1, 2), order="F")

    # Create a DataFrame
    df = pd.DataFrame(reshaped_array, columns=["p_mw", "q_mvar"])

    # Create load_scenario and bus columns
    load_idx = np.tile(np.arange(n_loads), n_scenarios)
    scenarios_idx = np.repeat(np.arange(n_scenarios), n_loads)

    df.insert(0, "load_scenario", scenarios_idx)
    df.insert(1, "load", load_idx)

    return df

plot_load_scenarios_combined

Generates a combined plot of active and reactive power load scenarios.

Creates a two-subplot figure with p_mw and q_mvar plots, one line per bus.

Parameters:

Name Type Description Default
df DataFrame

DataFrame containing load scenarios with columns: load_scenario, load, p_mw, q_mvar.

required
output_file str

Path where the HTML plot file should be saved.

required
Source code in gridfm_datakit/perturbations/load_perturbation.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def plot_load_scenarios_combined(df: pd.DataFrame, output_file: str) -> None:
    """Generates a combined plot of active and reactive power load scenarios.

    Creates a two-subplot figure with p_mw and q_mvar plots, one line per bus.

    Args:
        df: DataFrame containing load scenarios with columns: load_scenario, load, p_mw, q_mvar.
        output_file: Path where the HTML plot file should be saved.
    """
    # Create subplots
    fig = make_subplots(
        rows=2,
        cols=1,
        shared_xaxes=True,
        vertical_spacing=0.1,
        subplot_titles=("p_mw", "q_mvar"),
    )

    # Add p_mw plot
    for load in df["load"].unique():
        df_load = df[df["load"] == load]
        fig.add_trace(
            go.Scatter(
                x=df_load["load_scenario"],
                y=df_load["p_mw"],
                mode="lines",
                name=f"Load {load} p_mw",
            ),
            row=1,
            col=1,
        )

    # Add q_mvar plot
    for load in df["load"].unique():
        df_load = df[df["load"] == load]
        fig.add_trace(
            go.Scatter(
                x=df_load["load_scenario"],
                y=df_load["q_mvar"],
                mode="lines",
                name=f"Load {load} q_mvar",
            ),
            row=2,
            col=1,
        )

    # Update layout
    fig.update_layout(height=800, width=1500, title_text="Load Scenarios")

    # Save the combined plot to an HTML file
    fig.write_html(output_file)