Load Perturbations¶
This module provides functions and classes for generating load scenarios.
Classes¶
LoadScenarioGeneratorBase
¶
Bases: ABC
Abstract base class for load scenario generators.
This class defines the interface and common functionality for generating load scenarios for power grid networks.
Source code in gridfm_datakit/perturbations/load_perturbation.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
__call__(net, n_scenarios, scenario_log)
abstractmethod
¶Generates load scenarios for a power network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net
|
pandapowerNet
|
The power network. |
required |
n_scenarios
|
int
|
Number of scenarios to generate. |
required |
scenario_log
|
str
|
Path to log file for scenario generation details. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
find_largest_scaling_factor(net, max_scaling, step_size, start, change_reactive_power)
staticmethod
¶Finds the largest load scaling factor that maintains OPF convergence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net
|
pandapowerNet
|
The power network. |
required |
max_scaling
|
float
|
Maximum scaling factor to try. |
required |
step_size
|
float
|
Increment for scaling factor search. |
required |
start
|
float
|
Starting scaling factor. |
required |
change_reactive_power
|
bool
|
Whether to scale reactive power. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
Largest scaling factor that maintains OPF convergence. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If OPF does not converge for the starting value. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
interpolate_row(row, data_points)
staticmethod
¶Interpolates a row of data to match the desired number of data points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
row
|
ndarray
|
Input data array to interpolate. |
required |
data_points
|
int
|
Number of points in the output array. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Interpolated data array of length data_points. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
min_max_scale(series, new_min, new_max)
staticmethod
¶Scales a series of values to a new range using min-max normalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series
|
ndarray
|
Input data array to scale. |
required |
new_min
|
float
|
Minimum value of the output range. |
required |
new_max
|
float
|
Maximum value of the output range. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Scaled data array. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
LoadScenariosFromAggProfile
¶
Bases: LoadScenarioGeneratorBase
Generates load scenarios by scaling an aggregated load profile and adding local noise.
Overview
This generator uses an aggregated load profile (a time series of normalized demand values) to simulate realistic variations in load over time. The process includes:
- Determining an upper bound
u
for load scaling such that the network still supports a feasible optimal power flow (OPF) solution. - Setting the lower bound \(l = (1 - \text{global\textunderscore range}) \cdot u\).
- Min-max scaling the aggregate profile to the interval \([l, u]\).
- Applying this global scaling factor to each load's nominal value with additive uniform noise.
Mathematical Model
Let:
-
\(n\): Number of loads (\(i \in \{1, \dots, n\}\))
-
\(K\): Number of scenarios (\(k \in \{1, \dots, K\}\))
-
\((p, q) \in (\mathbb{R}_{\geq 0}^n)^2\): Nominal active/reactive loads
-
\(\text{agg}^k\): Aggregated load profile value at time step \(k\)
-
\(u\): Maximum feasible global scaling factor (from OPF)
-
\(l = (1 - \text{global\textunderscore range}) \cdot u\): Minimum global scaling factor
-
\(\text{ref}^k = \text{MinMaxScale}(\text{agg}^k, [l, u])\): Scaled aggregate profile
-
\(\varepsilon_i^k \sim \mathcal{U}(1 - \sigma, 1 + \sigma)\): Active power noise
-
\(\eta_i^k \sim \mathcal{U}(1 - \sigma, 1 + \sigma)\): Reactive power noise (if enabled)
Then for each load \(i\) and scenario \(k\):
For each load \(i\) and scenario \(k\): $$ \tilde{p}_i^k = p_i \cdot \text{ref}^k \cdot \varepsilon_i^k $$
Notes
-
The upper bound
u
is automatically determined by gradually increasing the base load and solving the OPF until it fails. -
The lower bound
l
is computed as a relative percentage (1-global_range
) ofu
. -
Noise helps simulate local variability across loads within a global trend.
Source code in gridfm_datakit/perturbations/load_perturbation.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
__call__(net, n_scenarios, scenarios_log)
¶Generates load profiles based on aggregated load data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net
|
pandapowerNet
|
The power network. |
required |
n_scenarios
|
int
|
Number of scenarios to generate. |
required |
scenarios_log
|
str
|
Path to log file for scenario generation details. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values. |
Raises:
Type | Description |
---|---|
ValueError
|
If start_scaling_factor is less than global_range. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
__init__(agg_load_name, sigma, change_reactive_power, global_range, max_scaling_factor, step_size, start_scaling_factor)
¶Initializes the load scenario generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agg_load_name
|
str
|
Name of the aggregated load profile file. |
required |
sigma
|
float
|
Standard deviation for noise addition. |
required |
change_reactive_power
|
bool
|
Whether to scale reactive power. |
required |
global_range
|
float
|
Range for scaling factor. |
required |
max_scaling_factor
|
float
|
Maximum scaling factor to try. |
required |
step_size
|
float
|
Increment for scaling factor search. |
required |
start_scaling_factor
|
float
|
Starting scaling factor. |
required |
Source code in gridfm_datakit/perturbations/load_perturbation.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
Powergraph
¶
Bases: LoadScenarioGeneratorBase
Load scenario generator using the PowerGraph method.
Generates load scenarios by scaling the nominal active power profile with a normalized reference curve while keeping reactive power fixed.
Mathematical Model
Let:
- \(n\): Number of loads (indexed by \(i \in \{1, \dots, n\}\))
- \(K\): Number of scenarios (indexed by \(k \in \{1, \dots, K\}\))
- \((p, q) \in (\mathbb{R}_{\geq 0}^n)^2\): Nominal active and reactive load vectors
- \(\text{ref}^k \in [0, 1]\): Normalized aggregate reference profile at scenario \(k\)
- \((\tilde{p}_i^k, \tilde{q}_i^k) \in \mathbb{R}_{\geq 0}^2\): Active/reactive load at bus \(i\) in scenario \(k\)
The reference profile is computed by normalizing an aggregated profile:
Then, for each bus \(i\) and scenario \(k\):
and reactive power is kept constant:
Source code in gridfm_datakit/perturbations/load_perturbation.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
__call__(net, n_scenarios, scenario_log)
¶Generates load profiles based on aggregated load data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net
|
pandapowerNet
|
The power network. |
required |
n_scenarios
|
int
|
Number of scenarios to generate. |
required |
scenario_log
|
str
|
Path to log file for scenario generation details. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
__init__(agg_load_name)
¶Initializes the powergraph load scenario generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agg_load_name
|
str
|
Name of the aggregated load profile file. |
required |
Source code in gridfm_datakit/perturbations/load_perturbation.py
442 443 444 445 446 447 448 449 450 451 |
|
load_scenarios_to_df
¶
Converts load scenarios array to a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scenarios
|
ndarray
|
3D numpy array of shape (n_loads, n_scenarios, 2) containing p_mw and q_mvar values. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with columns: load_scenario, load, p_mw, q_mvar. |
Source code in gridfm_datakit/perturbations/load_perturbation.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
plot_load_scenarios_combined
¶
Generates a combined plot of active and reactive power load scenarios.
Creates a two-subplot figure with p_mw and q_mvar plots, one line per bus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame containing load scenarios with columns: load_scenario, load, p_mw, q_mvar. |
required |
output_file
|
str
|
Path where the HTML plot file should be saved. |
required |
Source code in gridfm_datakit/perturbations/load_perturbation.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|