Skip to content

Process Network

This module provides functions for processing power networks and scenarios.

pf_preprocessing

Set variables to the results of OPF.

Updates the following network components with OPF results:

  • sgen.p_mw: active power generation for static generators
  • gen.p_mw, gen.vm_pu: active power and voltage magnitude for generators

Parameters:

Name Type Description Default
net Network

The power network to preprocess.

required
res Dict[str, Any]

OPF result dictionary containing solution data.

required

Returns:

Type Description
Network

Updated network with OPF results applied.

Source code in gridfm_datakit/process/process_network.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def pf_preprocessing(net: Network, res: Dict[str, Any]) -> Network:
    """Set variables to the results of OPF.

    Updates the following network components with OPF results:

    - sgen.p_mw: active power generation for static generators
    - gen.p_mw, gen.vm_pu: active power and voltage magnitude for generators

    Args:
        net: The power network to preprocess.
        res: OPF result dictionary containing solution data.

    Returns:
        Updated network with OPF results applied.
    """
    pg = [
        res["solution"]["gen"][str(i + 1)]["pg"] * net.baseMVA
        for i in net.idx_gens_in_service
    ]
    vm = [
        res["solution"]["bus"][str(net.reverse_bus_index_mapping[i])]["vm"]
        for i in range(net.buses.shape[0])
    ]

    net.Pg_gen = pg
    net.Vm = vm

    return net

pf_post_processing

Post-process solved network results into numpy arrays for CSV export.

This function extracts power flow results and builds four arrays matching the column schemas defined in gridfm_datakit.utils.column_names:

  • Bus data with BUS_COLUMNS (+ DC_BUS_COLUMNS if include_dc_res=True)
  • Generator data with GEN_COLUMNS
  • Branch data with BRANCH_COLUMNS
  • Y-bus nonzero entries with [index1, index2, G, B]

Parameters:

Name Type Description Default
net Network

The power network to process (must have solved power flow results).

required
res Dict[str, Any]

Power flow result dictionary containing solution data.

required
include_dc_res bool

If True, include DC power flow voltage magnitude/angle (Vm_dc, Va_dc).

required

Returns:

Type Description
Dict[str, ndarray]

Dictionary containing:

Dict[str, ndarray]
  • "bus": np.ndarray with bus-level features
Dict[str, ndarray]
  • "gen": np.ndarray with generator features
Dict[str, ndarray]
  • "branch": np.ndarray with branch features and admittances
Dict[str, ndarray]
  • "Y_bus": np.ndarray with nonzero Y-bus entries
Source code in gridfm_datakit/process/process_network.py
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
def pf_post_processing(
    scenario_index: int,
    net: Network,
    res: Dict[str, Any],
    res_dc: Dict[str, Any],
    include_dc_res: bool,
) -> Dict[str, np.ndarray]:
    """Post-process solved network results into numpy arrays for CSV export.

    This function extracts power flow results and builds four arrays matching
    the column schemas defined in `gridfm_datakit.utils.column_names`:

    - Bus data with BUS_COLUMNS (+ DC_BUS_COLUMNS if include_dc_res=True)
    - Generator data with GEN_COLUMNS
    - Branch data with BRANCH_COLUMNS
    - Y-bus nonzero entries with [index1, index2, G, B]

    Args:
        net: The power network to process (must have solved power flow results).
        res: Power flow result dictionary containing solution data.
        include_dc_res: If True, include DC power flow voltage magnitude/angle (Vm_dc, Va_dc).

    Returns:
        Dictionary containing:
        - "bus": np.ndarray with bus-level features
        - "gen": np.ndarray with generator features
        - "branch": np.ndarray with branch features and admittances
        - "Y_bus": np.ndarray with nonzero Y-bus entries
    """

    # --- Edge (branch) info ---
    n_branches = net.branches.shape[0]
    n_cols = (
        len(BRANCH_COLUMNS) + len(DC_BRANCH_COLUMNS)
        if include_dc_res
        else len(BRANCH_COLUMNS)
    )
    X_branch = np.zeros((n_branches, n_cols))
    X_branch[:, 0] = scenario_index
    X_branch[:, 1] = list(range(n_branches))
    X_branch[:, 2] = np.real(net.branches[:, F_BUS])
    X_branch[:, 3] = np.real(net.branches[:, T_BUS])

    # pf, qf, pt, qt
    if res["solution"]["pf"]:
        # when solving pf, the flow of all branches is computed, so the number of branches in solution should match the number of branches in network
        assert len(res["solution"]["branch"]) == n_branches, (
            "Number of branches in solution should match number of branches in network"
        )
    else:
        # when solving opf, the flow of only the in-service branches is computed, so the number of branches in solution should match the number of in-service branches in network
        assert len(res["solution"]["branch"]) == len(net.idx_branches_in_service), (
            "Number of branches in solution should match number of branches in network"
        )

    X_branch[net.idx_branches_in_service, 4] = np.array(
        [
            res["solution"]["branch"][str(i + 1)]["pf"] * net.baseMVA
            for i in net.idx_branches_in_service
        ],
    )
    X_branch[net.idx_branches_in_service, 5] = np.array(
        [
            res["solution"]["branch"][str(i + 1)]["qf"] * net.baseMVA
            for i in net.idx_branches_in_service
        ],
    )
    X_branch[net.idx_branches_in_service, 6] = np.array(
        [
            res["solution"]["branch"][str(i + 1)]["pt"] * net.baseMVA
            for i in net.idx_branches_in_service
        ],
    )
    X_branch[net.idx_branches_in_service, 7] = np.array(
        [
            res["solution"]["branch"][str(i + 1)]["qt"] * net.baseMVA
            for i in net.idx_branches_in_service
        ],
    )

    X_branch[:, 8] = net.branches[:, BR_R]
    X_branch[:, 9] = net.branches[:, BR_X]
    X_branch[:, 10] = net.branches[:, BR_B]

    # admittances
    Ytt, Yff, Yft, Ytf = branch_vectors(net.branches, net.branches.shape[0])
    X_branch[:, 11] = np.real(Yff)
    X_branch[:, 12] = np.imag(Yff)
    X_branch[:, 13] = np.real(Yft)
    X_branch[:, 14] = np.imag(Yft)
    X_branch[:, 15] = np.real(Ytf)
    X_branch[:, 16] = np.imag(Ytf)
    X_branch[:, 17] = np.real(Ytt)
    X_branch[:, 18] = np.imag(Ytt)

    X_branch[:, 19] = net.branches[:, TAP]
    # assign 1 to tap = 0
    X_branch[net.branches[:, TAP] == 0, 19] = 1

    X_branch[:, 20] = net.branches[:, SHIFT]
    X_branch[:, 21] = net.branches[:, ANGMIN]
    X_branch[:, 22] = net.branches[:, ANGMAX]
    X_branch[:, 23] = net.branches[:, RATE_A]
    X_branch[:, 24] = net.branches[:, BR_STATUS]

    if include_dc_res:
        if res_dc is not None:
            pf_dc = np.array(
                [
                    res_dc["solution"]["branch"][str(i + 1)]["pf"] * net.baseMVA
                    for i in net.idx_branches_in_service
                ],
            )
            pt_dc = np.array(
                [
                    res_dc["solution"]["branch"][str(i + 1)]["pt"] * net.baseMVA
                    for i in net.idx_branches_in_service
                ],
            )
            X_branch[net.idx_branches_in_service, 25] = pf_dc
            X_branch[net.idx_branches_in_service, 26] = pt_dc
        else:
            X_branch[net.idx_branches_in_service, 25] = np.nan
            X_branch[net.idx_branches_in_service, 26] = np.nan

    # --- Bus data ---
    n_buses = net.buses.shape[0]
    n_cols = (
        len(BUS_COLUMNS) + len(DC_BUS_COLUMNS) if include_dc_res else len(BUS_COLUMNS)
    )
    X_bus = np.zeros((n_buses, n_cols))

    # --- Loads ---
    X_bus[:, 0] = scenario_index
    X_bus[:, 1] = net.buses[:, BUS_I]  # bus
    X_bus[:, 2] = net.buses[:, PD]
    X_bus[:, 3] = net.buses[:, QD]

    # --- Generator injections
    assert len(res["solution"]["gen"]) == len(net.idx_gens_in_service), (
        "Number of generators in solution should match number of generators in network"
    )
    pg_gen = np.array(
        [
            res["solution"]["gen"][str(i + 1)]["pg"] * net.baseMVA
            for i in net.idx_gens_in_service
        ],
    )
    qg_gen = np.array(
        [
            res["solution"]["gen"][str(i + 1)]["qg"] * net.baseMVA
            for i in net.idx_gens_in_service
        ],
    )
    gen_bus = net.gens[net.idx_gens_in_service, GEN_BUS].astype(int)
    Pg_bus = np.bincount(gen_bus, weights=pg_gen, minlength=n_buses)
    Qg_bus = np.bincount(gen_bus, weights=qg_gen, minlength=n_buses)

    assert np.all(Pg_bus[net.buses[:, BUS_TYPE] == PQ] == 0)
    assert np.all(Qg_bus[net.buses[:, BUS_TYPE] == PQ] == 0)

    if include_dc_res:
        if res_dc is not None:
            # check if "gen" key is in res_dc["solution"]
            if "gen" in res_dc["solution"]:
                pg_gen_dc = np.array(
                    [
                        res_dc["solution"]["gen"][str(i + 1)]["pg"] * net.baseMVA
                        for i in net.idx_gens_in_service
                    ],
                )
            else:
                pg_gen_dc = apply_slack_single_gen(net, pg_gen, Pg_bus, pf_dc, pt_dc)
            Pg_bus_dc = np.bincount(gen_bus, weights=pg_gen_dc, minlength=n_buses)
            assert np.all(Pg_bus_dc[net.buses[:, BUS_TYPE] == PQ] == 0)

    X_bus[:, 4] = Pg_bus
    X_bus[:, 5] = Qg_bus

    # Voltage
    assert set([int(k) for k in res["solution"]["bus"].keys()]) == set(
        net.reverse_bus_index_mapping.values(),
    ), "Buses in solution should match buses in network"

    X_bus[:, 6] = [
        res["solution"]["bus"][str(net.reverse_bus_index_mapping[i])]["vm"]
        for i in range(n_buses)
    ]
    va = np.rad2deg(
        [
            res["solution"]["bus"][str(net.reverse_bus_index_mapping[i])]["va"]
            for i in range(n_buses)
        ],
    )

    # convert to range [-180, 180]
    va = (va + 180) % 360 - 180
    X_bus[:, 7] = va

    # one-hot encoding of bus type
    assert np.all(np.isin(net.buses[:, BUS_TYPE], [PQ, PV, REF])), (
        "Bus type should be PQ, PV, or REF, no disconnected buses (4)"
    )

    X_bus[np.arange(n_buses), 8 + net.buses[:, BUS_TYPE].astype(int) - 1] = (
        1  # because type is 1, 2, 3, not 0, 1, 2
    )

    # base_kv, min_vm_pu, max_vm_pu
    X_bus[:, 11] = net.buses[:, BASE_KV]
    X_bus[:, 12] = net.buses[:, VMIN]
    X_bus[:, 13] = net.buses[:, VMAX]

    X_bus[:, 14] = net.buses[:, GS] / net.baseMVA
    X_bus[:, 15] = net.buses[:, BS] / net.baseMVA

    if include_dc_res:
        if res_dc is not None:
            va = np.rad2deg(
                [
                    res_dc["solution"]["bus"][str(net.reverse_bus_index_mapping[i])][
                        "va"
                    ]
                    for i in range(n_buses)
                ],
            )
            # convert to range [-180, 180]
            va = (va + 180) % 360 - 180
            X_bus[:, 16] = va
            X_bus[:, 17] = Pg_bus_dc
        else:
            X_bus[:, 16] = np.nan
            X_bus[:, 17] = np.nan

    # --- Generator data ---

    n_cost = net.gencosts[0, NCOST]
    assert np.all(net.gencosts[:, NCOST] == n_cost), (
        "NCOST should be the same for all generators"
    )
    n_gens = net.gens.shape[0]
    n_cols = (
        len(GEN_COLUMNS) + len(DC_GEN_COLUMNS) if include_dc_res else len(GEN_COLUMNS)
    )

    X_gen = np.zeros((n_gens, n_cols))
    X_gen[:, 0] = scenario_index
    X_gen[:, 1] = list(range(n_gens))
    X_gen[:, 2] = net.gens[:, GEN_BUS]
    X_gen[net.idx_gens_in_service, 3] = pg_gen  # 0 if not in service
    X_gen[net.idx_gens_in_service, 4] = qg_gen  # 0 if not in service
    X_gen[:, 5] = net.gens[:, PMIN]
    X_gen[:, 6] = net.gens[:, PMAX]
    X_gen[:, 7] = net.gens[:, QMIN]
    X_gen[:, 8] = net.gens[:, QMAX]

    if n_cost == 3:  # order in .m file is c2, c1, c0
        X_gen[:, 9] = net.gencosts[:, COST + 2]
        X_gen[:, 10] = net.gencosts[:, COST + 1]
        X_gen[:, 11] = net.gencosts[:, COST]

    if n_cost == 2:  # order in .m file is c1, c0, and there is no cp2 cost
        X_gen[:, 9] = net.gencosts[:, COST + 1]
        X_gen[:, 10] = net.gencosts[:, COST]
        X_gen[:, 11] = 0  # no cp2 cost for linear cost function

    if n_cost == 1:  # order in .m file is c0, and there is no cp1 or cp2 cost
        X_gen[:, 9] = net.gencosts[:, COST]
        X_gen[:, 10] = 0  # no cp1 cost for constant cost function
        X_gen[:, 11] = 0  # no cp2 cost for constant cost function

    X_gen[net.idx_gens_in_service, 12] = 1

    # slack gen (can be any generator connected to the ref node)
    slack_gen_idx = np.where(net.gens[:, GEN_BUS] == net.ref_bus_idx)[0]
    X_gen[slack_gen_idx, 13] = 1

    if include_dc_res:
        if res_dc is not None:
            X_gen[net.idx_gens_in_service, 14] = pg_gen_dc
        else:
            X_gen[net.idx_gens_in_service, 14] = np.nan

    # --- Y-bus ---
    Y_bus, Yf, Yt = makeYbus(net.baseMVA, net.buses, net.branches)

    i, j = np.nonzero(Y_bus)
    # note that Y_bus[i,j] can be != 0 even if a branch from i to j is not in service because there might be other branches connected to the same buses

    s = Y_bus[i, j]
    G = np.real(s)
    B = np.imag(s)

    edge_index = np.column_stack((i, j))
    edge_attr = np.stack((G, B)).T
    Y_bus = np.zeros(
        (edge_index.shape[0], edge_attr.shape[1] + edge_index.shape[1] + 1),
    )
    Y_bus[:, 0] = scenario_index
    Y_bus[:, 1:] = np.column_stack((edge_index, edge_attr))

    # ---- runtime data ----
    n_cols = (
        len(RUNTIME_COLUMNS) + len(DC_RUNTIME_COLUMNS)
        if include_dc_res
        else len(RUNTIME_COLUMNS)
    )
    X_runtime = np.zeros((1, n_cols))
    X_runtime[0, 0] = scenario_index
    X_runtime[0, 1] = res["solve_time"]
    if include_dc_res:
        if res_dc is not None:
            X_runtime[0, 2] = res_dc["solve_time"]
        else:
            X_runtime[0, 2] = np.nan
    return {
        "bus": X_bus,
        "gen": X_gen,
        "branch": X_branch,
        "Y_bus": Y_bus,
        "runtime": X_runtime,
    }

process_scenario_opf_mode

Processes a load scenario in OPF mode

In OPF mode, perturbations are applied first, then OPF is run to get generator setpoints that account for the perturbed topology. This ensures all constraints are satisfied in the final operating point.

Parameters:

Name Type Description Default
net Network

The power network.

required
scenarios ndarray

Array of load scenarios with shape (n_loads, n_scenarios, 2).

required
scenario_index int

Index of the current scenario to process.

required
topology_generator TopologyGenerator

Generator for topology perturbations (line/transformer outages).

required
generation_generator GenerationGenerator

Generator for generation cost perturbations.

required
admittance_generator AdmittanceGenerator

Generator for line admittance perturbations.

required
local_processed_data List[ndarray]

List to accumulate processed data tuples.

required
error_log_file str

Path to error log file for recording failures.

required
include_dc_res bool

Whether to include DC power flow results in output.

required
jl Any

Julia interface object for running power flow calculations.

required

Returns:

Type Description
List[ndarray]

Updated list of processed data (bus, gen, branch, Y_bus arrays)

Note

Random seed is controlled by the calling context (process_scenario_chunk).

Source code in gridfm_datakit/process/process_network.py
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
def process_scenario_opf_mode(
    net: Network,
    scenarios: np.ndarray,
    scenario_index: int,
    topology_generator: TopologyGenerator,
    generation_generator: GenerationGenerator,
    admittance_generator: AdmittanceGenerator,
    local_processed_data: List[np.ndarray],
    error_log_file: str,
    include_dc_res: bool,
    jl: Any,
) -> List[np.ndarray]:
    """Processes a load scenario in OPF mode

    In OPF mode, perturbations are applied first, then OPF is run to get
    generator setpoints that account for the perturbed topology. This ensures
    all constraints are satisfied in the final operating point.

    Args:
        net: The power network.
        scenarios: Array of load scenarios with shape (n_loads, n_scenarios, 2).
        scenario_index: Index of the current scenario to process.
        topology_generator: Generator for topology perturbations (line/transformer outages).
        generation_generator: Generator for generation cost perturbations.
        admittance_generator: Generator for line admittance perturbations.
        local_processed_data: List to accumulate processed data tuples.
        error_log_file: Path to error log file for recording failures.
        include_dc_res: Whether to include DC power flow results in output.
        jl: Julia interface object for running power flow calculations.

    Returns:
        Updated list of processed data (bus, gen, branch, Y_bus arrays)

    Note:
        Random seed is controlled by the calling context (process_scenario_chunk).
    """

    # apply the load scenario to the network
    net.Pd = scenarios[:, scenario_index, 0]
    net.Qd = scenarios[:, scenario_index, 1]

    # Generate perturbed topologies
    perturbations = topology_generator.generate(net)

    # Apply generation perturbations
    perturbations = generation_generator.generate(perturbations)

    # Apply admittance perturbations
    perturbations = admittance_generator.generate(perturbations)

    for perturbation in (
        perturbations
    ):  # (that returns copies of the network with the topology perturbation applied)
        res_dcopf = None
        if include_dc_res:
            try:
                res_dcopf = run_dcopf(perturbation, jl)
            except Exception as e:
                with open(error_log_file, "a") as f:
                    f.write(
                        f"Caught an exception at scenario {scenario_index} in run_dcopf function: {e}\n",
                    )
        try:
            # run OPF to get the gen set points. Here the set points account for the topology perturbation.
            res = run_opf(perturbation, jl)
        except Exception as e:
            with open(error_log_file, "a") as f:
                f.write(
                    f"Caught an exception at scenario {scenario_index} in run_opf function: {e}\n",
                )
            continue

        # Append processed power flow data
        pf_data = pf_post_processing(
            scenario_index,
            perturbation,
            res,
            res_dcopf,
            include_dc_res,
        )
        local_processed_data.append(
            (
                pf_data["bus"],
                pf_data["gen"],
                pf_data["branch"],
                pf_data["Y_bus"],
                pf_data["runtime"],
            ),
        )
    return local_processed_data

process_scenario_pf_mode

Processes a load scenario in PF mode

In PF mode, OPF is run first to get generator setpoints, then topology perturbations are applied. This can lead to constraint violations (overloads, voltage violations) since the setpoints are not re-optimized for the new topology.

Parameters:

Name Type Description Default
net Network

The power network.

required
scenarios ndarray

Array of load scenarios with shape (n_loads, n_scenarios, 2).

required
scenario_index int

Index of the current scenario to process.

required
topology_generator TopologyGenerator

Generator for topology perturbations (line/transformer outages).

required
generation_generator GenerationGenerator

Generator for generation cost perturbations.

required
admittance_generator AdmittanceGenerator

Generator for line admittance perturbations.

required
local_processed_data List[ndarray]

List to accumulate processed data tuples.

required
error_log_file str

Path to error log file for recording failures.

required
include_dc_res bool

Whether to include DC power flow results in output.

required
pf_fast bool

Whether to use fast AC PF solver.

required
dcpf_fast bool

Whether to use fast DC PF solver.

required
jl Any

Julia interface object for running power flow calculations.

required

Returns:

Type Description
List[ndarray]

Updated list of processed data (bus, gen, branch, Y_bus arrays)

Note

Random seed is controlled by the calling context (process_scenario_chunk).

Source code in gridfm_datakit/process/process_network.py
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
def process_scenario_pf_mode(
    net: Network,
    scenarios: np.ndarray,
    scenario_index: int,
    topology_generator: TopologyGenerator,
    generation_generator: GenerationGenerator,
    admittance_generator: AdmittanceGenerator,
    local_processed_data: List[np.ndarray],
    error_log_file: str,
    include_dc_res: bool,
    pf_fast: bool,
    dcpf_fast: bool,
    jl: Any,
) -> List[np.ndarray]:
    """Processes a load scenario in PF mode

    In PF mode, OPF is run first to get generator setpoints, then topology
    perturbations are applied. This can lead to constraint violations (overloads,
    voltage violations) since the setpoints are not re-optimized for the new topology.

    Args:
        net: The power network.
        scenarios: Array of load scenarios with shape (n_loads, n_scenarios, 2).
        scenario_index: Index of the current scenario to process.
        topology_generator: Generator for topology perturbations (line/transformer outages).
        generation_generator: Generator for generation cost perturbations.
        admittance_generator: Generator for line admittance perturbations.
        local_processed_data: List to accumulate processed data tuples.
        error_log_file: Path to error log file for recording failures.
        include_dc_res: Whether to include DC power flow results in output.
        pf_fast: Whether to use fast AC PF solver.
        dcpf_fast: Whether to use fast DC PF solver.
        jl: Julia interface object for running power flow calculations.

    Returns:
        Updated list of processed data (bus, gen, branch, Y_bus arrays)

    Note:
        Random seed is controlled by the calling context (process_scenario_chunk).
    """
    net = copy.deepcopy(net)

    # apply the load scenario to the network
    net.Pd = scenarios[:, scenario_index, 0]
    net.Qd = scenarios[:, scenario_index, 1]

    # Apply generation perturbations before OPF.
    perturbations = generation_generator.generate((x for x in [net]))

    # Apply admittance perturbations
    perturbations = admittance_generator.generate(perturbations)

    net = next(perturbations)

    # first run OPF to get the gen set points
    try:
        res = run_opf(net, jl)
    except Exception as e:
        with open(error_log_file, "a") as f:
            f.write(
                f"Caught an exception at scenario {scenario_index} in run_opf function: {e}\n",
            )
        return local_processed_data

    net_pf = copy.deepcopy(net)
    net_pf = pf_preprocessing(net_pf, res)

    # Generate perturbed topologies
    perturbations = topology_generator.generate(net_pf)

    # to get PF points that can violate some OPF inequality constraints (to train PF solvers that can handle points outside of normal operating limits), we apply the topology perturbation after OPF.
    # The setpoints are then no longer adapted to the new topology, and might lead to e.g. abranch overload or a voltage magnitude violation once we drop an element.
    for perturbation in perturbations:
        res_dcpf = None
        if include_dc_res:
            try:
                res_dcpf = run_dcpf(perturbation, jl, fast=dcpf_fast)

            except Exception as e:
                with open(error_log_file, "a") as f:
                    f.write(
                        f"Caught an exception at scenario {scenario_index} when solving dcpf function: {e}\n",
                    )

        try:
            res = run_pf(perturbation, jl, fast=pf_fast)
        except Exception as e:
            with open(error_log_file, "a") as f:
                f.write(
                    f"Caught an exception at scenario {scenario_index} when solving in run_pf function: {e}\n",
                )
            continue

        # Append processed power flow data
        pf_data = pf_post_processing(
            scenario_index,
            perturbation,
            res,
            res_dcpf,
            include_dc_res,
        )
        local_processed_data.append(
            (
                pf_data["bus"],
                pf_data["gen"],
                pf_data["branch"],
                pf_data["Y_bus"],
                pf_data["runtime"],
            ),
        )
    return local_processed_data

process_scenario_chunk

Process a chunk of scenarios for distributed processing.

This function processes multiple scenarios in a single worker process, accumulating results before returning them to the main process.

Parameters:

Name Type Description Default
mode str

Processing mode ("opf" or "pf").

required
start_idx int

Starting scenario index (inclusive).

required
end_idx int

Ending scenario index (exclusive).

required
scenarios ndarray

Array of load scenarios with shape (n_loads, n_scenarios, 2).

required
net Network

The power network.

required
progress_queue Queue

Queue for reporting progress to main process.

required
topology_generator TopologyGenerator

Generator for topology perturbations.

required
generation_generator GenerationGenerator

Generator for generation cost perturbations.

required
admittance_generator AdmittanceGenerator

Generator for line admittance perturbations.

required
error_log_path str

Path to error log file for recording failures.

required
include_dc_res bool

Whether to include DC power flow results in output.

required
pf_fast bool

Whether to use fast AC PF solver.

required
dcpf_fast bool

Whether to use fast DC PF solver.

required
solver_log_dir str

Directory for solver logs.

required
max_iter int

Maximum iterations for the solver.

required
seed int

Global random seed for reproducibility.

required

Returns:

Type Description
Tuple[Union[None, Exception], Union[None, str], Optional[List[ndarray]]]

Tuple containing: - Exception object (None if successful) - Traceback string (None if successful) - List of processed data tuples (bus, gen, branch, Y_bus arrays)

Source code in gridfm_datakit/process/process_network.py
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
def process_scenario_chunk(
    mode: str,
    start_idx: int,
    end_idx: int,
    scenarios: np.ndarray,
    net: Network,
    progress_queue: Queue,
    topology_generator: TopologyGenerator,
    generation_generator: GenerationGenerator,
    admittance_generator: AdmittanceGenerator,
    error_log_path: str,
    include_dc_res: bool,
    pf_fast: bool,
    dcpf_fast: bool,
    solver_log_dir: str,
    max_iter: int,
    seed: int,
) -> Tuple[
    Union[None, Exception],
    Union[None, str],
    Optional[List[np.ndarray]],
]:
    """Process a chunk of scenarios for distributed processing.

    This function processes multiple scenarios in a single worker process,
    accumulating results before returning them to the main process.

    Args:
        mode: Processing mode ("opf" or "pf").
        start_idx: Starting scenario index (inclusive).
        end_idx: Ending scenario index (exclusive).
        scenarios: Array of load scenarios with shape (n_loads, n_scenarios, 2).
        net: The power network.
        progress_queue: Queue for reporting progress to main process.
        topology_generator: Generator for topology perturbations.
        generation_generator: Generator for generation cost perturbations.
        admittance_generator: Generator for line admittance perturbations.
        error_log_path: Path to error log file for recording failures.
        include_dc_res: Whether to include DC power flow results in output.
        pf_fast: Whether to use fast AC PF solver.
        dcpf_fast: Whether to use fast DC PF solver.
        solver_log_dir: Directory for solver logs.
        max_iter: Maximum iterations for the solver.
        seed: Global random seed for reproducibility.

    Returns:
        Tuple containing:
            - Exception object (None if successful)
            - Traceback string (None if successful)
            - List of processed data tuples (bus, gen, branch, Y_bus arrays)
    """

    try:
        jl = init_julia(max_iter, solver_log_dir)
        local_processed_data = []

        # Use custom_seed to set seed based on start_idx for this chunk
        # This ensures each chunk gets a unique but deterministic seed
        # we multiply by 20_000 to ensure there is no collision with other runs where the seed would be close to each other
        # example (assuming we have chunks of length 1, hence an increment of 1 between start indices)
        # Run A: base seed = 42 → scenario seeds = 42, 43, 44, …, 10041 (for 10,000 scenarios)
        # Run B: base seed = 120 → scenario seeds = 120, 121, 122, …, 10119
        # These sets overlap on seeds 120..10041 (so 9,922 overlapping seeds).
        # we also add 1 in case the seed is 0, to not have collision witht he seed used for the load perturbations
        with custom_seed(seed * 20_000 + start_idx + 1):
            for scenario_index in range(start_idx, end_idx):
                if mode == "opf":
                    local_processed_data = process_scenario_opf_mode(
                        net,
                        scenarios,
                        scenario_index,
                        topology_generator,
                        generation_generator,
                        admittance_generator,
                        local_processed_data,
                        error_log_path,
                        include_dc_res,
                        jl,
                    )
                elif mode == "pf":
                    local_processed_data = process_scenario_pf_mode(
                        net,
                        scenarios,
                        scenario_index,
                        topology_generator,
                        generation_generator,
                        admittance_generator,
                        local_processed_data,
                        error_log_path,
                        include_dc_res,
                        pf_fast,
                        dcpf_fast,
                        jl,
                    )

                progress_queue.put(1)  # update queue

        return (
            None,
            None,
            local_processed_data,
        )
    except Exception as e:
        with open(error_log_path, "a") as f:
            f.write(f"Caught an exception in process_scenario_chunk function: {e}\n")
            f.write(traceback.format_exc())
            f.write("\n")
        for _ in range(end_idx - start_idx):
            progress_queue.put(1)
        return e, traceback.format_exc(), None