Skip to content

Option 1: Run data gen using interactive interface

To use the interactive interface, either open scripts/interactive_interface.ipynb or copy the following into a Jupyter notebook and follow the instructions:

from gridfm_datakit.interactive import interactive_interface
interactive_interface()

Option 2: Using the command line interface

Run the data generation routine from the command line:

gridfm_datakit path/to/config.yaml

Configuration Overview

Refer to the sections Network, Load Scenarios, and Topology perturbations for a description of the configuration parameters.

Sample configuration files are provided in scripts/config, e.g. default.yaml:

network:
  name: "case24_ieee_rts" # Name of the power grid network (without extension)
  source: "pglib" # Data source for the grid; options: pglib, pandapower, file
  network_dir: "scripts/grids" # if using source "file", this is the directory containing the network file (relative to the project root)


load:
  generator: "agg_load_profile" # Name of the load generator; options: agg_load_profile, powergraph
  agg_profile: "default" # Name of the aggregated load profile
  scenarios: 200 # Number of different load scenarios to generate
  # WARNING: the following parameters are only used if generator is "agg_load_profile"
  # if using generator "powergraph", these parameters are ignored
  sigma: 0.05 # max local noise
  change_reactive_power: true # If true, changes reactive power of loads. If False, keeps the ones from the case file
  global_range: 0.4 # Range of the global scaling factor. used to set the lower bound of the scaling factor
  max_scaling_factor: 4.0 # Max upper bound of the global scaling factor
  step_size: 0.025 # Step size when finding the upper bound of the global scaling factor
  start_scaling_factor: 0.8 # Initial value of the global scaling factor

topology_perturbation:
  type: "random" # Type of topology generator; options: n_minus_k, random, none
  # WARNING: the following parameters are only used if type is not "none"
  k: 1 # Maximum number of components to drop in each perturbation
  n_topology_variants: 5 # Number of unique perturbed topologies per scenario
  elements: ["line", "trafo", "gen", "sgen"] # elements to perturb options: line, trafo, gen, sgen

settings:
  num_processes: 10 # Number of parallel processes to use
  data_dir: "./data_out" # Directory to save generated data relative to the project root
  large_chunk_size: 50 # Number of load scenarios processed before saving
  no_stats: false # If true, disables statistical calculations
  overwrite: true # If true, overwrites existing files, if false, appends to files (note that bus_params.csv, edge_params.csv, scenarios_{load.generator}.csv and scenarios_{load.generator}.html will still be overwritten)
  mode: "pf" # Mode of the script; options: contingency, pf


Output Files

The data generation process produces several output files in the specified data directory:

  • tqdm.log: Progress bar log.
  • error.log: Log of the errors raised during data generation.
  • args.log: Copy of the config file used.
  • pf_node.csv: Data related to the nodes (buses) in the network, such as voltage levels and power injections.
  • pf_edge.csv: Branch admittance matrix for each pf case.
  • branch_idx_removed.csv: List of the indices of the branches (lines and transformers) that got removed when perturbing the topologies.
  • edge_params.csv: Branch admittance matrix and branch rate limits for the unperturbed topology.
  • bus_params.csv: Parameters for the buses (voltage limits and the base voltage).
  • scenario_{args.load.generator}.csv: Load element-level load profile obtained after using the load scenario generator.
  • scenario_{args.load.generator}.html: Plots of the element-level load profile.
  • scenario_{args.load.generator}.log: If generator is "agg_load_profile", stores the upper and lower bounds for the global scaling factor.
  • stats.csv: Stats about the generated data.
  • stats_plot.html: Plots of the stats about the generated data.