LitGridDataModule¶
Bases: LightningDataModule
PyTorch Lightning DataModule for power grid datasets.
This datamodule handles loading, preprocessing, splitting, and batching
of power grid graph datasets (GridDatasetDisk
) for training, validation,
testing, and prediction. It ensures reproducibility through fixed seeds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
NestedNamespace
|
Experiment configuration. |
required |
data_dir
|
str
|
Root directory for datasets. Defaults to "./data". |
'./data'
|
Attributes:
Name | Type | Description |
---|---|---|
batch_size |
int
|
Batch size for all dataloaders. From |
node_normalizers |
list
|
List of node feature normalizers, one per dataset. |
edge_normalizers |
list
|
List of edge feature normalizers, one per dataset. |
datasets |
list
|
Original datasets for each network. |
train_datasets |
list
|
Train splits for each network. |
val_datasets |
list
|
Validation splits for each network. |
test_datasets |
list
|
Test splits for each network. |
train_dataset_multi |
ConcatDataset
|
Concatenated train datasets for multi-network training. |
val_dataset_multi |
ConcatDataset
|
Concatenated validation datasets for multi-network validation. |
_is_setup_done |
bool
|
Tracks whether |
Methods:
Name | Description |
---|---|
setup |
Load and preprocess datasets, split into train/val/test, and store normalizers. Handles distributed preprocessing safely. |
train_dataloader |
Returns a DataLoader for concatenated training datasets. |
val_dataloader |
Returns a DataLoader for concatenated validation datasets. |
test_dataloader |
Returns a list of DataLoaders, one per test dataset. |
predict_dataloader |
Returns a list of DataLoaders, one per test dataset for prediction. |
Notes
- Preprocessing is only performed on rank 0 in distributed settings.
- Subsets and splits are deterministic based on the provided random seed.
- Normalizers are loaded for each network independently.
- Test and predict dataloaders are returned as lists, one per dataset.
Example
from gridfm_graphkit.datasets.powergrid_datamodule import LitGridDataModule
from gridfm_graphkit.io.param_handler import NestedNamespace
import yaml
with open("config/config.yaml") as f:
base_config = yaml.safe_load(f)
args = NestedNamespace(**base_config)
datamodule = LitGridDataModule(args, data_dir="./data")
datamodule.setup("fit")
train_loader = datamodule.train_dataloader()
Source code in gridfm_graphkit/datasets/powergrid_datamodule.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|