Data Normalization¶
Normalization improves neural network training by ensuring features are well-scaled, preventing issues like exploding gradients and slow convergence. In power grids, where variables like voltage and power span wide ranges, normalization is essential.
The gridfm-graphkit
package offers four methods:
Each of these strategies implements a unified interface and can be used interchangeably depending on the learning task and data characteristics.
Users can create their own custom normalizers by extending the base
Normalizer
class to suit specific needs.
Available Normalizers¶
Normalizer
¶
Bases: ABC
Abstract base class for all normalization strategies.
Source code in gridfm_graphkit/datasets/normalizers.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
fit(data)
abstractmethod
¶Fit normalization parameters from data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary of computed parameters. |
Source code in gridfm_graphkit/datasets/normalizers.py
12 13 14 15 16 17 18 19 20 21 22 |
|
fit_from_dict(params)
abstractmethod
¶Set parameters from a precomputed dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
dict
|
Dictionary of parameters. |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
24 25 26 27 28 29 30 31 |
|
get_stats()
abstractmethod
¶Return the stored normalization statistics for logging/inspection.
Source code in gridfm_graphkit/datasets/normalizers.py
57 58 59 60 61 |
|
inverse_transform(normalized_data)
abstractmethod
¶Undo normalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalized_data
|
Tensor
|
Normalized tensor. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Original tensor. |
Source code in gridfm_graphkit/datasets/normalizers.py
45 46 47 48 49 50 51 52 53 54 55 |
|
transform(data)
abstractmethod
¶Normalize the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized tensor. |
Source code in gridfm_graphkit/datasets/normalizers.py
33 34 35 36 37 38 39 40 41 42 43 |
|
MinMaxNormalizer
¶
Bases: Normalizer
Scales each feature to the [0, 1] range.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
Standardizer
¶
Bases: Normalizer
Standardizes each feature to zero mean and unit variance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
BaseMVANormalizer
¶
Bases: Normalizer
In power systems, a suitable normalization strategy must preserve the physical properties of the system. A known method is the conversion to the per-unit (p.u.) system, which expresses electrical quantities such as voltage, current, power, and impedance as fractions of predefined base values. These base values are usually chosen based on system parameters, such as rated voltage. The per-unit conversion ensures that power system equations remain scale-invariant, preserving fundamental physical relationships.
Source code in gridfm_graphkit/datasets/normalizers.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
__init__(node_data, args)
¶Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Attributes:
Name | Type | Description |
---|---|---|
baseMVA |
float
|
baseMVA found in casefile. From |
Source code in gridfm_graphkit/datasets/normalizers.py
183 184 185 186 187 188 189 190 191 192 193 194 |
|
IdentityNormalizer
¶
Bases: Normalizer
No normalization: returns data unchanged.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
Usage Workflow¶
Example:
from gridfm_graphkit.datasets.normalizers import MinMaxNormalizer
import torch
data = torch.randn(100, 5) # Example tensor
normalizer = MinMaxNormalizer(node_data=True,args=None)
params = normalizer.fit(data)
normalized = normalizer.transform(data)
restored = normalizer.inverse_transform(normalized)