Data Normalization¶
Normalization improves neural network training by ensuring features are well-scaled, preventing issues like exploding gradients and slow convergence. In power grids, where variables like voltage and power span wide ranges, normalization is essential.
The gridfm-graphkit
package offers four methods:
Each of these strategies implements a unified interface and can be used interchangeably depending on the learning task and data characteristics.
Users can create their own custom normalizers by extending the base
Normalizer
class to suit specific needs.
Available Normalizers¶
Normalizer
¶
Bases: ABC
Abstract base class for all normalization strategies.
Source code in gridfm_graphkit/datasets/normalizers.py
fit(data)
abstractmethod
¶Fit normalization parameters from data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary of computed parameters. |
fit_from_dict(params)
abstractmethod
¶Set parameters from a precomputed dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
dict
|
Dictionary of parameters. |
required |
get_stats()
abstractmethod
¶inverse_transform(normalized_data)
abstractmethod
¶Undo normalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalized_data
|
Tensor
|
Normalized tensor. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Original tensor. |
transform(data)
abstractmethod
¶Normalize the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized tensor. |
MinMaxNormalizer
¶
Bases: Normalizer
Scales each feature to the [0, 1] range.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
Standardizer
¶
Bases: Normalizer
Standardizes each feature to zero mean and unit variance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
BaseMVANormalizer
¶
Bases: Normalizer
In power systems, a suitable normalization strategy must preserve the physical properties of the system. A known method is the conversion to the per-unit (p.u.) system, which expresses electrical quantities such as voltage, current, power, and impedance as fractions of predefined base values. These base values are usually chosen based on system parameters, such as rated voltage. The per-unit conversion ensures that power system equations remain scale-invariant, preserving fundamental physical relationships.
Source code in gridfm_graphkit/datasets/normalizers.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
__init__(node_data, args)
¶Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Attributes:
Name | Type | Description |
---|---|---|
baseMVA |
float
|
baseMVA found in casefile. From |
Source code in gridfm_graphkit/datasets/normalizers.py
IdentityNormalizer
¶
Bases: Normalizer
No normalization: returns data unchanged.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_data
|
bool
|
Whether data is node-level or edge-level |
required |
args
|
NestedNamespace
|
Parameters |
required |
Source code in gridfm_graphkit/datasets/normalizers.py
Usage Workflow¶
Example:
from gridfm_graphkit.datasets.normalizers import MinMaxNormalizer
import torch
data = torch.randn(100, 5) # Example tensor
normalizer = MinMaxNormalizer(node_data=True,args=None)
params = normalizer.fit(data)
normalized = normalizer.transform(data)
restored = normalizer.inverse_transform(normalized)