Skip to content

Power Grid datasets

GridDatasetDisk

Bases: Dataset

A PyTorch Geometric Dataset for power grid data stored on disk. This dataset reads node and edge CSV files, applies normalization, and saves each graph separately on disk as a processed file. Data is loaded from disk lazily on demand.

Parameters:

Name Type Description Default
root str

Root directory where the dataset is stored.

required
norm_method str

Identifier for normalization method (e.g., "minmax", "standard").

required
node_normalizer Normalizer

Normalizer used for node features.

required
edge_normalizer Normalizer

Normalizer used for edge features.

required
pe_dim int

Length of the random walk used for positional encoding.

required
mask_dim int

Number of features per-node that could be masked.

6
transform callable

Transformation applied at runtime.

None
pre_transform callable

Transformation applied before saving to disk.

None
pre_filter callable

Filter to determine which graphs to keep.

None
Source code in gridfm_graphkit/datasets/powergrid_dataset.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
class GridDatasetDisk(Dataset):
    """
    A PyTorch Geometric `Dataset` for power grid data stored on disk.
    This dataset reads node and edge CSV files, applies normalization,
    and saves each graph separately on disk as a processed file.
    Data is loaded from disk lazily on demand.

    Args:
        root (str): Root directory where the dataset is stored.
        norm_method (str): Identifier for normalization method (e.g., "minmax", "standard").
        node_normalizer (Normalizer): Normalizer used for node features.
        edge_normalizer (Normalizer): Normalizer used for edge features.
        pe_dim (int): Length of the random walk used for positional encoding.
        mask_dim (int, optional): Number of features per-node that could be masked.
        transform (callable, optional): Transformation applied at runtime.
        pre_transform (callable, optional): Transformation applied before saving to disk.
        pre_filter (callable, optional): Filter to determine which graphs to keep.
    """

    def __init__(
        self,
        root: str,
        norm_method: str,
        node_normalizer: Normalizer,
        edge_normalizer: Normalizer,
        pe_dim: int,
        mask_dim: int = 6,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
    ):
        self.norm_method = norm_method
        self.node_normalizer = node_normalizer
        self.edge_normalizer = edge_normalizer
        self.pe_dim = pe_dim
        self.mask_dim = mask_dim
        self.length = None

        super().__init__(root, transform, pre_transform, pre_filter)

        # Load normalization stats if available
        node_stats_path = osp.join(
            self.processed_dir,
            f"node_stats_{self.norm_method}.pt",
        )
        edge_stats_path = osp.join(
            self.processed_dir,
            f"edge_stats_{self.norm_method}.pt",
        )
        if osp.exists(node_stats_path) and osp.exists(edge_stats_path):
            self.node_stats = torch.load(node_stats_path, weights_only=False)
            self.edge_stats = torch.load(edge_stats_path, weights_only=False)
            self.node_normalizer.fit_from_dict(self.node_stats)
            self.edge_normalizer.fit_from_dict(self.edge_stats)

    @property
    def raw_file_names(self):
        return ["pf_node.csv", "pf_edge.csv"]

    @property
    def processed_done_file(self):
        return f"processed_{self.norm_method}_{self.mask_dim}_{self.pe_dim}.done"

    @property
    def processed_file_names(self):
        return [self.processed_done_file]

    def download(self):
        pass

    def process(self):
        node_df = pd.read_csv(osp.join(self.raw_dir, "pf_node.csv"))
        edge_df = pd.read_csv(osp.join(self.raw_dir, "pf_edge.csv"))

        # Check the unique scenarios available
        scenarios = node_df["scenario"].unique()
        # Ensure node and edge data match
        if not (scenarios == edge_df["scenario"].unique()).all():
            raise ValueError("Mismatch between node and edge scenario values.")

        # normalize node attributes
        cols_to_normalize = ["Pd", "Qd", "Pg", "Qg", "Vm", "Va"]
        to_normalize = torch.tensor(
            node_df[cols_to_normalize].values,
            dtype=torch.float,
        )
        self.node_stats = self.node_normalizer.fit(to_normalize)
        node_df[cols_to_normalize] = self.node_normalizer.transform(
            to_normalize,
        ).numpy()

        # normalize edge attributes
        cols_to_normalize = ["G", "B"]
        to_normalize = torch.tensor(
            edge_df[cols_to_normalize].values,
            dtype=torch.float,
        )
        if isinstance(self.node_normalizer, BaseMVANormalizer):
            self.edge_stats = self.edge_normalizer.fit(
                to_normalize,
                self.node_normalizer.baseMVA,
            )
        else:
            self.edge_stats = self.edge_normalizer.fit(to_normalize)
        edge_df[cols_to_normalize] = self.edge_normalizer.transform(
            to_normalize,
        ).numpy()

        # save stats
        node_stats_path = osp.join(
            self.processed_dir,
            f"node_stats_{self.norm_method}.pt",
        )
        edge_stats_path = osp.join(
            self.processed_dir,
            f"edge_stats_{self.norm_method}.pt",
        )
        torch.save(self.node_stats, node_stats_path)
        torch.save(self.edge_stats, edge_stats_path)

        # Create groupby objects for scenarios
        node_groups = node_df.groupby("scenario")
        edge_groups = edge_df.groupby("scenario")

        for scenario_idx in tqdm(scenarios):
            # NODE DATA
            node_data = node_groups.get_group(scenario_idx)
            x = torch.tensor(
                node_data[
                    ["Pd", "Qd", "Pg", "Qg", "Vm", "Va", "PQ", "PV", "REF"]
                ].values,
                dtype=torch.float,
            )
            y = x[:, : self.mask_dim]

            # EDGE DATA
            edge_data = edge_groups.get_group(scenario_idx)
            edge_attr = torch.tensor(edge_data[["G", "B"]].values, dtype=torch.float)
            edge_index = torch.tensor(
                edge_data[["index1", "index2"]].values.T,
                dtype=torch.long,
            )

            # Create the Data object
            graph_data = Data(
                x=x,
                edge_index=edge_index,
                edge_attr=edge_attr,
                y=y,
                scenario_id=scenario_idx,
            )
            pe_pre_transform = AddEdgeWeights()
            graph_data = pe_pre_transform(graph_data)
            pe_transform = AddNormalizedRandomWalkPE(
                walk_length=self.pe_dim,
                attr_name="pe",
            )
            graph_data = pe_transform(graph_data)
            torch.save(
                graph_data,
                osp.join(
                    self.processed_dir,
                    f"data_{self.norm_method}_{self.mask_dim}_{self.pe_dim}_index_{scenario_idx}.pt",
                ),
            )
        with open(osp.join(self.processed_dir, self.processed_done_file), "w") as f:
            f.write("done")

    def len(self):
        if self.length is None:
            files = [
                f
                for f in os.listdir(self.processed_dir)
                if f.startswith(
                    f"data_{self.norm_method}_{self.mask_dim}_{self.pe_dim}_index_",
                )
                and f.endswith(".pt")
            ]
            self.length = len(files)
        return self.length

    def get(self, idx):
        file_name = osp.join(
            self.processed_dir,
            f"data_{self.norm_method}_{self.mask_dim}_{self.pe_dim}_index_{idx}.pt",
        )
        if not osp.exists(file_name):
            raise IndexError(f"Data file {file_name} does not exist.")
        data = torch.load(file_name, weights_only=False)
        if self.transform:
            data = self.transform(data)
        return data

    def change_transform(self, new_transform):
        """
        Temporarily switch to a new transform function, used when evaluating different tasks.

        Args:
            new_transform (Callable): The new transform to use.
        """
        self.original_transform = self.transform
        self.transform = new_transform

    def reset_transform(self):
        """
        Reverts the transform to the original one set during initialization, usually called after the evaluation step.
        """
        if self.original_transform is None:
            raise ValueError(
                "The original transform is None or the function change_transform needs to be called before",
            )
        self.transform = self.original_transform
change_transform(new_transform)

Temporarily switch to a new transform function, used when evaluating different tasks.

Parameters:

Name Type Description Default
new_transform Callable

The new transform to use.

required
Source code in gridfm_graphkit/datasets/powergrid_dataset.py
209
210
211
212
213
214
215
216
217
def change_transform(self, new_transform):
    """
    Temporarily switch to a new transform function, used when evaluating different tasks.

    Args:
        new_transform (Callable): The new transform to use.
    """
    self.original_transform = self.transform
    self.transform = new_transform
reset_transform()

Reverts the transform to the original one set during initialization, usually called after the evaluation step.

Source code in gridfm_graphkit/datasets/powergrid_dataset.py
219
220
221
222
223
224
225
226
227
def reset_transform(self):
    """
    Reverts the transform to the original one set during initialization, usually called after the evaluation step.
    """
    if self.original_transform is None:
        raise ValueError(
            "The original transform is None or the function change_transform needs to be called before",
        )
    self.transform = self.original_transform