Loss Functions
Power Balance Equation Loss
\[
\mathcal{L}_{\text{PBE}} = \frac{1}{N} \sum_{i=1}^N \left| (P_{G,i} - P_{D,i}) + j(Q_{G,i} - Q_{D,i}) - S_{\text{injection}, i} \right|
\]
Bases: Module
Loss based on the Power Balance Equations.
Source code in gridfm_graphkit/utils/loss.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137 | class PBELoss(nn.Module):
"""
Loss based on the Power Balance Equations.
"""
def __init__(self, visualization=False):
super(PBELoss, self).__init__()
self.visualization = visualization
def forward(self, pred, target, edge_index, edge_attr, mask):
# Create a temporary copy of pred to avoid modifying it
temp_pred = pred.clone()
# If a value is not masked, then use the original one
unmasked = ~mask
temp_pred[unmasked] = target[unmasked]
# Voltage magnitudes and angles
V_m = temp_pred[:, VM] # Voltage magnitudes
V_a = temp_pred[:, VA] # Voltage angles
# Compute the complex voltage vector V
V = V_m * torch.exp(1j * V_a)
# Compute the conjugate of V
V_conj = torch.conj(V)
# Extract edge attributes for Y_bus
edge_complex = edge_attr[:, G] + 1j * edge_attr[:, B]
# Construct sparse admittance matrix (real and imaginary parts separately)
Y_bus_sparse = to_torch_coo_tensor(
edge_index,
edge_complex,
size=(target.size(0), target.size(0)),
)
# Conjugate of the admittance matrix
Y_bus_conj = torch.conj(Y_bus_sparse)
# Compute the complex power injection S_injection
S_injection = torch.diag(V) @ Y_bus_conj @ V_conj
# Compute net power balance
net_P = temp_pred[:, PG] - temp_pred[:, PD]
net_Q = temp_pred[:, QG] - temp_pred[:, QD]
S_net_power_balance = net_P + 1j * net_Q
# Power balance loss
loss = torch.mean(
torch.abs(S_net_power_balance - S_injection),
) # Mean of absolute complex power value
real_loss_power = torch.mean(
torch.abs(torch.real(S_net_power_balance - S_injection)),
)
imag_loss_power = torch.mean(
torch.abs(torch.imag(S_net_power_balance - S_injection)),
)
if self.visualization:
return {
"loss": loss,
"Power power loss in p.u.": loss.item(),
"Active Power Loss in p.u.": real_loss_power.item(),
"Reactive Power Loss in p.u.": imag_loss_power.item(),
"Nodal Active Power Loss in p.u.": torch.abs(
torch.real(S_net_power_balance - S_injection),
),
"Nodal Reactive Power Loss in p.u.": torch.abs(
torch.imag(S_net_power_balance - S_injection),
),
}
else:
return {
"loss": loss,
"Power power loss in p.u.": loss.item(),
"Active Power Loss in p.u.": real_loss_power.item(),
"Reactive Power Loss in p.u.": imag_loss_power.item(),
}
|
Mean Squared Error Loss
\[
\mathcal{L}_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2
\]
Bases: Module
Standard Mean Squared Error loss.
Source code in gridfm_graphkit/utils/loss.py
23
24
25
26
27
28
29
30
31
32 | class MSELoss(nn.Module):
"""Standard Mean Squared Error loss."""
def __init__(self, reduction="mean"):
super(MSELoss, self).__init__()
self.reduction = reduction
def forward(self, pred, target, edge_index=None, edge_attr=None, mask=None):
loss = F.mse_loss(pred, target, reduction=self.reduction)
return {"loss": loss, "MSE loss": loss.item()}
|
Masked Mean Squared Error Loss
\[
\mathcal{L}_{\text{MaskedMSE}} = \frac{1}{|M|} \sum_{i \in M} (y_i - \hat{y}_i)^2
\]
Bases: Module
Mean Squared Error loss computed only on masked elements.
Source code in gridfm_graphkit/utils/loss.py
9
10
11
12
13
14
15
16
17
18
19
20 | class MaskedMSELoss(nn.Module):
"""
Mean Squared Error loss computed only on masked elements.
"""
def __init__(self, reduction="mean"):
super(MaskedMSELoss, self).__init__()
self.reduction = reduction
def forward(self, pred, target, edge_index=None, edge_attr=None, mask=None):
loss = F.mse_loss(pred[mask], target[mask], reduction=self.reduction)
return {"loss": loss, "Masked MSE loss": loss.item()}
|
Scaled Cosine Error Loss
\[
\mathcal{L}_{\text{SCE}} = \frac{1}{N} \sum_{i=1}^N \left(1 - \frac{\hat{y}^T_i \cdot y_i}{\|\hat{y}_i\| \|y_i\|}\right)^\alpha \text{ , } \alpha \geq 1
\]
Bases: Module
Scaled Cosine Error Loss with optional masking and normalization.
Source code in gridfm_graphkit/utils/loss.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | class SCELoss(nn.Module):
"""Scaled Cosine Error Loss with optional masking and normalization."""
def __init__(self, alpha=3):
super(SCELoss, self).__init__()
self.alpha = alpha
def forward(self, pred, target, edge_index=None, edge_attr=None, mask=None):
if mask is not None:
pred = F.normalize(pred[mask], p=2, dim=-1)
target = F.normalize(target[mask], p=2, dim=-1)
else:
pred = F.normalize(pred, p=2, dim=-1)
target = F.normalize(target, p=2, dim=-1)
loss = ((1 - (pred * target).sum(dim=-1)).pow(self.alpha)).mean()
return {
"loss": loss,
"SCE loss": loss.item(),
}
|
Mixed Loss
\[
\mathcal{L}_{\text{Mixed}} = \sum_{m=1}^M w_m \cdot \mathcal{L}_m
\]
Bases: Module
Combines multiple loss functions with weighted sum.
Parameters:
Name |
Type |
Description |
Default |
loss_functions
|
list[Module]
|
|
required
|
weights
|
list[float]
|
Corresponding weights for each loss function.
|
required
|
Source code in gridfm_graphkit/utils/loss.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198 | class MixedLoss(nn.Module):
"""
Combines multiple loss functions with weighted sum.
Args:
loss_functions (list[nn.Module]): List of loss functions.
weights (list[float]): Corresponding weights for each loss function.
"""
def __init__(self, loss_functions, weights):
super(MixedLoss, self).__init__()
if len(loss_functions) != len(weights):
raise ValueError(
"The number of loss functions must match the number of weights.",
)
self.loss_functions = nn.ModuleList(loss_functions)
self.weights = weights
def forward(self, pred, target, edge_index=None, edge_attr=None, mask=None):
"""
Compute the weighted sum of all specified losses.
Parameters:
- pred: Predictions.
- target: Ground truth.
- edge_index: Optional edge index for graph-based losses.
- edge_attr: Optional edge attributes for graph-based losses.
- mask: Optional mask to filter the inputs for certain losses.
Returns:
- A dictionary with the total loss and individual losses.
"""
total_loss = 0.0
loss_details = {}
for i, loss_fn in enumerate(self.loss_functions):
loss_output = loss_fn(
pred,
target,
edge_index=edge_index,
edge_attr=edge_attr,
mask=mask,
)
# Assume each loss function returns a dictionary with a "loss" key
individual_loss = loss_output.pop("loss")
weighted_loss = self.weights[i] * individual_loss
total_loss += weighted_loss
# Add other keys from the loss output to the details
for key, val in loss_output.items():
loss_details[key] = val
loss_details["loss"] = total_loss
return loss_details
|
forward(pred, target, edge_index=None, edge_attr=None, mask=None)
Compute the weighted sum of all specified losses.
Parameters:
- pred: Predictions.
- target: Ground truth.
- edge_index: Optional edge index for graph-based losses.
- edge_attr: Optional edge attributes for graph-based losses.
- mask: Optional mask to filter the inputs for certain losses.
Returns:
- A dictionary with the total loss and individual losses.
Source code in gridfm_graphkit/utils/loss.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198 | def forward(self, pred, target, edge_index=None, edge_attr=None, mask=None):
"""
Compute the weighted sum of all specified losses.
Parameters:
- pred: Predictions.
- target: Ground truth.
- edge_index: Optional edge index for graph-based losses.
- edge_attr: Optional edge attributes for graph-based losses.
- mask: Optional mask to filter the inputs for certain losses.
Returns:
- A dictionary with the total loss and individual losses.
"""
total_loss = 0.0
loss_details = {}
for i, loss_fn in enumerate(self.loss_functions):
loss_output = loss_fn(
pred,
target,
edge_index=edge_index,
edge_attr=edge_attr,
mask=mask,
)
# Assume each loss function returns a dictionary with a "loss" key
individual_loss = loss_output.pop("loss")
weighted_loss = self.weights[i] * individual_loss
total_loss += weighted_loss
# Add other keys from the loss output to the details
for key, val in loss_output.items():
loss_details[key] = val
loss_details["loss"] = total_loss
return loss_details
|